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Noise sustained propagation: Local versus global noise
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We expand on prior results on noise supported signal propagation in arrays of coupled bistable elements. We
present and compare experimental and numerical results for kink propagation under the influence of local and
global fluctuations. As demonstrated previously for local noise, an optimum range of global noise power exists
for which the medium acts as a reliable transmission “channel.” We discuss implications for propagation
failure in a model of cardiac tissue, and present a general theoretical framework based on discrete kink
statistics. Valid for generic bistable chains, the theory captures the essential features observed in our experi-
ments and numerical simulations.

PACS numbegps): 05.40—a, 02.50--r, 05.45:-a, 87.10+e

[. INTRODUCTION respectively—greatly increases the chances of successful sig-
nal transmission. Digital simulations of NEP in a simple
Information transfer through nonlinear systems in themodel of cardiac tissue compare favorably with these obser-
presence of fluctuations has been extensively studied in theéations, and allow us to investigate the effects of parameter
context of stochastic resonan@) []_] The frontier of this mismatch between the elements. Finally, we present theoret-
research has shifted toward systems with Spatia| degrees tﬁal iﬂSightS borrowed from discrete kink statistics which
freedom over the past few years. While the efforts initially describe the phenomena in reasonable agreement.
were directed towards enhancing the basic SR eff2tt
recent work has demonstrated that noise can also sustain [l. EXPERIMENTAL RESULTS
wave propagatiof3-5]. In early studies, Jung and Mayer- . . .
Kress FS] l;h?)wed that noise c)gn sustain sp?ral Wavesy in a The experlmen.tal setup con5|st§ of 256 poupled diode
caricature model of excitable media. The assisting role ofesonators, of which one element is S.hOWH.In .F'g' 1. The
elements are arranged in aX&6 array with periodic bound-

noise for one- and two-dimensional, nonlinear wave propa:- giti ted al " ite ed Each
gation was experimentally confirmed by #aa et al.[3] in a ary conditions connected along wo opposite edges. tac

: : “ . diode resonator works as a bistable element when driven in
chemical medium, and by loberet al. [4] in an array of . . :
coupled electronic resonators. Noise enhanced propagatidﬁ period-2 state. We break the phase symmetry by adding to

(NEP) for periodicsignals was explored by Lindnet al.[3] .

in a chain of coupled, overdamped bistable oscillators. The (I’J,H)
authors of Ref[5] furnished evidence of self-organized criti-
cality underlying the creation and propagation of waves by
noise in a chemical subexcitable medium. So far, all experi-
ments and simulations on NEP utilizédcal and additive
noise. To our knowledge, no comparative studies on the ef-
fectiveness of local vs global and additive vs multiplicative
noise have been attempted.

In this paper, we experimentally investigate the effective-
ness of global noise as compared to local noise for the propa-
gation of a signal in a chain of coupled bistable elements.
Expanding on earlier repor{gl], the experiments are per-
formed using a 1816 array of diode resonators driven in
the stable period-2 regime. A bias consisting of a second
drive at half the main frequency renders one phase more
stable, and a phase kink can be made to propagate across thi
array. For an intermediate value of the coupling resistors and
small bias, we observe propagation failure. Adding noise to
the drive of each element, either from a single source or from
individual sources—corresponding to global and local noise,
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FIG. 1. Experimental circuit arrangement for any nodg)(
We either add noise locally, as shown, or globally by adding one
*Present address: Siemens Corporate Research, 755 College Rabise source to the main drive. Coupling is provided by the resistors
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D318, — kink propagation generates a step function at the detector,
which we average over approximately 100 events, resulting
8 in a smooth rise curvésolid lineg. In order to quantify
transmission degeneration by noise nucleated spurious sig-
0.12 — , nals, we repeat the same experiment without inducing a
phase flip initially(dashed lines
i The arrival-probability curves for both local and global
. noise at five different noise strengths are shown in Fig. 3. For
008 —| . local, i.e., independent from site to site, noise, we obtain
. results analogous to those previously repoftgdFor a local
noise background of less than 0.0025 iz [Fig. 3@)],
kinks remained trapped longer than the measurement time of
. 5000 drive cycles. At 0.0121 nfYHz the signals arrive with
. a wide distribution of travel times and a slow mefdfig.
. 3(b)]. The arrival times become shorter with increasing noise
n strengthgFigs. 3c) and 3d)]. Finally, at 0.0625 m¥/Hz a
substantial number of false staf@ashed lingscorrupt the
0.00 I . I . | detection of the original input signal.
0.00 1.00 2.00 3.00 We found that the qualitative behavior of the chain under
Bk L. Tnis) the influence of global noise is similar, but the onset of de-
FIG. 2. Kink velocity as a function of the bias for an interme- tectable kink propagation ',S found at ,mUCh Iower_ noise
diate value of the coupling resisté . The kink speed shows an Strengths. We observe no kink propagation below noise lev-
approximate linear decrease with bias, down to a cutoff value of!S 0f 0.001 mV/Hz. Slow and disperse kink motion occurs
approximately 0.9 units. for noise levels of 0.0025 mA/Hz [Fig. 3@)]. Higher aver-
age kink speeds and less fluctuations are recorded for levels
the drive a second sinusoidal signal at half its frequencyof 0.0121 and 0.0256 nA/Hz [Figs. 3b) and 3c)], while
This bias renders one phase more stable. We refer to the letize signal is severely corrupted for value€).04 m\Z/Hz
stable phase as the metastable state. By inducing a phadegs. 3d) and 3e)].
change at one edge of the array, a one-dimensional wave Figure 4 compares the velocities of the propagating wave
front comprised of phase kinks will travel toward the detec-front as a function of the noise strength for both global and
tor at the other edge. The noise generators were constructéecal noise. The velocity of the propagating wave front
using the shot noise generated by a current througina shows an approximate linear increase with increasing noise
junction diode as a source. strength in both cases. Note that the velocity is simply the
It is clear that in the absence of noise, a local phase jumpverse of the measured arrival times multiplied by the num-
will lead to a “domino effect” only if the bias and coupling ber of sites. Itis hence well defined only for low noise levels;
are strong enough. The energetically lower phase then propé? the case of substantial nucleation of additional thermal
gates into the metastable phase in the form of a moving kinkkinks-antikink pairs this calculated *“velocity” should be in-
For identical elements, the speed of this moving interfacderpreted with caution. Therefore, the data points in Figs. 4
depends on both the coupling strength and the amplitude @gfnd 7 which correspond to significant noise corruption
the applied bias. If the latter two parameters are chosen to kghould be considered as outliers. For the coupling resistors
low enough, kinks in discrete systems will fail to propagate.used, the velocity for the global noise case is about 15%
In the experiment, there is a third factor contributing to kink greater than that seen for local noise.
trapping, namely, heterogeneity of the chain. In our system, Besides the earlier onset in the case of global noise, there
the variation of key parameters of the diode resonators andre also notable differences in the mechanism that leads to
the difference in local noise power is as high as 10%. Ar-spurious signals. Clearly, for identical elements—unlike spa-
ranging the array with periodic boundary conditions in onetially uncorrelated noise—global noise cannot induce spuri-
dimension and preserving the motion of wave fronts in theous kinks, which then compete with the deterministic kink
other dimension, we considerably reduce inhomogenities bgue to the signal. The only way of generating a “false
effectively averaging over 16 elements. alarm” at the detector would be to phase flip the entire
Figure 2 displays the measured kink velocities in the ab<hain, thus requiring a single large fluctuation. This picture is
sence of noise as a function of bias for an intermediate valugot fully correct if there are mismatches between the ele-
of the coupling resistors. The velocity decreases approximents, but illustrates the dominant mechanism of creating
mately linearly with the bias down to a cutoff value of 0.9 the signal-masking noise background. Independent noise
units, where it rapidly falls off to zero. We operate the arraysources, however, easily spawn spurious kinks, but rarely
at a bias of 0.6 units for which the system is not capable ofver cause a global phase flip of the array. We postulate that
deterministic kink motion. the mechanism of noise sustained propagatienseis not
Our experimental results are given in terms of the arrival-very different for local and global noise, presuming the kink
probability curves shown in Fig. 3. The procedure for obtain-width is small (i.e., involving a few elements only The
ing these are analogous to those described in Réf.We  reason for this conjecture is the local nature of the stochastic
reset all resonators to be in the metastable state, and th@scape processes that provide for the average effective kink
induce a phase flip at one edge of the array. Any successfdlisplacement. As long as the spatial correlation length of the
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FIG. 3. Arrival probablity of a signal at the end of the chain
with (solid line) and without(dashed curvesan induced kink at the
beginning, for five local and global noise levels increasing from top
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FIG. 4. Experimentally observed average kink velocities as a
function of noise strength for both global and local noise. Note that
the last(two) data points) for local (globa) noise are corrupted by
noise, and should be interpreted as velocity only with caution.

noise is not substantially smaller than the kink width, the
noise induced “propulsion ” of the kink will be similar for
global and local noise. Note that the findings ofdéaet al.

[3], who briefly addressed the issue of noise correlation
lengths, are consistent with this conjecture.

Ill. SIMULATIONS OF A MODEL OF CARDIAC TISSUE

Propagation failure of signals due to discreteness of the
supporting medium was previously observed in theoretical
[6] and experimentdl7] studies of cardiac tissue. In particu-
lar, Keener introduced a modified cable theory, which incor-
porates the discretizing effects of the so-caliggh junctions
[6]. Gap junctions, characterized by thelatively high in-
tercellular resistancey, provide the electrical coupling be-
tween cardiac cells. Mathematically, the propagation of ac-
tion potential along cardiac cells is described by various
cable theories, which are analogous to wave propagation in
one-dimensional conductofgables. Formally, continuous
and discrete models describe the wave propagation by either
a partial differential equation or—in the latter case—via
coupled ordinary differential equation€ontinuous cable
theory either ignores the effects of the gap junctions or re-
places the cytoplasmic resistance with an effective resis-
tance; in either case the electrical resistance is assumed to be
spatially homogeneous. Here we focus on the opposite as-
sumption, that gap junctional resistance is much more impor-
tant than cytoplasmic resistance. We thus neglect the dynam-
ics within a cell and assume that the propagation of the
action potential is dominated by the delay caused by the gap
junctions [8]. Within the context of thisdiscrete cable
theory, we can write the current balance [&§

d¢, 1
Cmsﬁzr(¢n+172¢n+¢n71)+8|m(¢n)v (1)
g
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2.0 Here we only consider the case of purely additive noise,
— éu(1)=0. By following an analogous procedure to that in
g 1.5 the experiment, we obtain the probabilities for successful
g signal transmission as illustrated in Fig. 6. As in the experi-
= 1.0 ment, global noise provides for kink propagation at much
& lower values ofo? than local noise does. Figure 7 compares
§ 0.5 the velocities of the noise propulsed kink as a functiowrbf
= for both global and local noise. The velocity of the propagat-

oo—: ing wave front shows an approximately parabolic depen-

o T T T dence on the noise power in both cases. For the coupling
0 1 2 3 strength employed, global noise leads to speeds about 15%

Coupling (1/Ohm) greater than that observed for local noise.

FIG. 5. Kink speed as a function of coupling strengti 1/
for the continuous model equatié®) (dashed lingand the discrete
model equatiorl) (solid line). Note that propagation in the discrete  The decision of whether a kink arriving at the last element
model is impossible fory>r* (d<d*=1/r*). For this simulation,  corresponds to a signal injected at the first site constitutes a
CrS=1 andSly(¢)=12y34(1- $)(¢-0.5)+0.5. simple binary hypothesis-testing problei0]. We assign

_ ) _ the null hypothesi#, to “no signal injected,” and the op-
whered, is the transmembrane potential for i cell, Sis  posite for the alternative hypothesis,. Denote the accord-
the surface area of cell membrane, @ is the membrane ing decisionsD; as the judgment that hypothesis was in
capacitance per unit area of membrahg specifies the in-  effect. Clearly, there are two possible errors: A so-catyg
ward ionic currents per unit area of the membrane, and i$ error occurs when making the decision thidy was in
generally postulated to be a function @f,, having three  effect while the contrary is true. Borrowing notation from
zeros. For simplicity, we choose a simple cubic polynomialiadar detection, we refer to this as the probabilityfaite
Sln(#)=12{3¢(1~¢)(¢—0.5)+0.5 [6]. Note that alarm, P;=P(D4|H). On the other hand, i, was in ef-
though similar in appearance, Hd) is notsimply a discreti-  fect to generate the data, and we dedig then we have
zation of its continuous analog committed atype Il error, which in radar is referred to as a

missed detectioi10]. We do that with some probability
ab L2 9*® P(Do|H,) which is related to theprobability of detection
CnS—r =" —Z +Sly( ) (20 py=P(D;|H,) in an inverse fashionPy=1—P(D|H).
g In our experiment, there is no uniquely defined, objec-
tively “best” noise level without first defining a decision
trategy. Two suitable approaches &ii¢ the Neyman-
earson strategyin which the probability of detectioRy is
maximized while specifying an upper bound for the false
alarm probabilityP¢; and (ii) Bayes’ rule which assigns
costs to the various outcomes of the decision process, such as
correctly detecting a signal or being “deceived” by a spuri-
ous kink. The optimum noise level in the latter case would
be the one, which minimizes the total average cost.

In communication systems one is usually interested in the
total probability of errorP.=P(D;|Hg)+ P(Do/H1)=P;
+1—Py4. Though in the experimental setup there is no in-
herent time scale, i.e., the decision when to reset the chain is
rather arbitrary, in digital communication applications we
would expect information bits to be sent at a constant rate.

“Hence we choose a reasonable time interval, at the end of
which we measure the probabilities of false alaRp and
missed detection 4 P4 as functions of noise power. Then

IV. DETECTION CRITERIA

(wherelL is the size of the cardiac cglbut stands in its own
right as a spatially discrete nonlinear wave equation. Th
most important observation is that propagation can fail in
model(1) if r is sufficiently large, but increasing resistances
in Eq. (2) can never lead to propagation failure. Note that
depends on the excitability of the tissue.

Figure 5 shows a plot of the numerically determined
speed(solid line) of propagation for mode(l) as a function
of the coupling strengtld=1/ry, as well as the analytically
obtained kink spee@=(coL/CRy)\d (dashed ling for
Eqg. (2). The reader is referred to Ré¢6] for an explanation
of cg andR,. It is evident that propagation is impossible for
rq larger than a certain critical valu&, which turns out to
be a monotonic increasing function of excitabilf].

We have performed digital simulations of the stochasti
modification of Eq.(1),

ddq?[n =e(pni1— 2+ dn_1) P; is simply tr_\e value of the dgshed line in Fig. 6 at Fime
=300, andPy is the corresponding value for the solid line.
+SI (b [ 1+ En(D)]+ E(D), 3) For local and global noise, the total probability of erRyis

displayed in Fig. 8; for very low and rather high values of the
noise powerpP, is almost one. However, there exists an op-
timal noise strength for which botR; and 1- P, nearly
vanish, resulting in a sharp minimum Bf,.

using the Euler-Maruyama algorithf] with a time step of
dt=0.05 and a coupling strengte=0.07 (40 elements
Ea(t) and &y (1) are additive and multiplicative Gaussian
white noise, band limited in practice by the Nyquist fre-
guencyfy=1/2dt. We quantify the noise by its dimension-
less variancer’=2Df), where D is the height of the one- The results of Secs. II-IV touch upon two central prop-
sided noise spectrum. erties of kink statistics in a discrete bistable chain, namely,

V. THEORY
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FIG. 6. Arrival probabilities for the discrete model equatidn
with (solid line) and without(dashed curvesan induced kink at site
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4, the last data point includes a large fraction of spurious kinks,
which results in an artificially high value for the velocity.

the Brownian motion of an individual kink and the nucle-
ation of kink-antikink pairs in the presence of an external
static bias(or dc forcing term. In the absence of a precise
model for the two-state potential that describes the phase
shifts in the diode resonators of Sec. Il or drives the trans-
membrane potential of Sec. lll, we speculate thatithsitu
bistability of our arrays can be rendered satisfactorily in
terms of a double quadrati®Q) potential, that is by two
parabolas displaced by a distanca [ee Fig. @a)]. A dis-
crete DQ model is likely to capture, at least qualitatively, the
essential features of the array dynamics investigated above,
while affording substantial simplifications in its analytical
treatment. The analysis of this section can be carried over,
with more mathematical effort, to thé* model of Sec. Il
as well.

The DQ model has been studied both in the continuum
[11] and in the discrete cagé3]. In dimensionless units the
DQ Hamiltonian reads

1.0 1

0.8

0.6
n-‘d)

0.4

0.2

0.0 T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0

FIG. 8. Total probability of erroP, as a function of noise
varianced? (dimensionlessfor global (solid line) and local noise

1, for five local and .globa'll noise levels increasing from top o gashed ling For a range of optimal noise strengtti, virtually
bottom. The propagation distance spans 40 elements. Note that Wainishes. The qualitative behavior is robust to variations in the
employ dimensionless units for the noise powér

measurement time, which here is taken to be 300 time units.
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FIG. 9. The double quartitDQ) model forwy=cy=a=1 and
discreteness parametg+ 1. (a) The DQ potentiaV[ ¢] of Egs.(4)
and (6); (b) The PN potentialV(x,F) of Eqg. (15 and[18] for
F/F.,=0.08;(c) Kink stationary velocityu(T) versus bias intensity
F for w3/kT=20 (curve 1 and 50(curve 2. At T=0+ the limiting
curve (dashed is given by u/ug=0 for F<Fy, and u/ug
={(FIF)IN[F/(F—Fy)}"* for F>F,,. All quantities plotted are
dimensionless.
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o2 { [($n= dn-1)>+ (b= $ns1)?]

2
+%<|¢|—1>2], @

with H,=ma?/l. Each¢, can be regarded as the displace-
ment(in units of 2a) of the nth chain site with masm, ¢,
and wg represent, respectively, the limiting speed and fre
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A. Continuum limit

In the continuum(or displacive limit y— the Hamil-
tonian(4) can be expressed as the line integral of the Hamil-
tonian density

2
2¢X

Co

. ®)

i
H¢]= - +c5— +V[ 4],
where the string fieldb(x,t) is defined as lim, ¢y, (t) and
V[ ¢]=(w3/2)(|#|—1)?. The statistical mechanics of the
continuum DQ model can be worked out analytically in great

detail[11]. In particular, we know that the kink#_) and the
antikink solutions ¢ _)
1
1- exp( l
()

can be regarded as relativistic quasiparticles with size
=Co/wg, mMass My= Eolcézlld (or rest energy Eg
=w(Cy), and center of mas¥(t) =Xy+ ut.

At low temperature& T<E,, any string configuration can
be represented as a linear superposition of randomly distrib-
uted kinks and antikinks floating on a phonon bath. A DQ
string in equilibrium at temperaturé and with boundary
conditions¢(—,t) = ¢(+»,t) naturally bears a dilute gas
of thermal kink-antikink pairs with density

—[x=X(1)]
¢+ (X,1)=Esgrx—X(1)]

dv1-u?/c}

No(T)= ~Eo/kT, ®

1 1( Eo\ Y2
2\2d\kT
The qualification thermal underscores the fact thafpairs
per unit of lengthiwith nod<<1) are being generated by ther-

mal fluctuations alone, irrespective of any geometric con-
straint at the boundarigsee discussion of Fig. 2 in Sec).ll

B. Kink Brownian motion

The ¢ (x,t) solutions[Eg. (7)] tend to travel with an
arbitrary constant speag<c, unless perturbed by the cou-
pling to a heat bath or by an external field of force. The
simplest heat-bath model was obtairjéd] by adding a vis-
cous term—a¢, and a zero-mean, Gaussidocal noise
source(x,t) to the string equation of motion corresponding
to the Hamiltonian density6); that is,

quency of the phonon modes propagating along the chain g — 24 —wZsgi (|| —1)=—ad+F+L(x1).

andl denotes the chain lattice constéfdr instance, in Eq.
(1) | was set to 1 The ratio CSIIZ, which quantifies the

9

effectiveness of the coupling between two adjacent bistabl&lote that all our experiments and simulations have been car-
units, is the coupling constant of our model. The importanceied out in the overdamped limity> wg, and in the presence

of the discreteness effects is measured by disereteness
parameter

©)

namely, the ratio of the kink lengtth to the chain spacing

of an additional sub-threshold foréewith F< w3, also in-
corporated in Eq(9). Thermalization is imposed here by
choosing the noise autocorrelation function
(LX) (X, 1))=2akTS(t—t") S(x—x").

A single kink (antikink) subjected to thermal fluctuations
undergoes driven Brownian motion with Langevin equation

XZIa—'\/I()+77(t), (10
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where 7(t) is a zero-mean-valued Gaussian noise with C. Peierls-Nabarro potential

strength D=kT/aM, and autocorrelation function Let us go back now to the case of a discrete DQ chain.

(n(t) 7(0))=2D 5(t). As apparent from Eq10), the exter-  piscretenesgwith parametery) affects the kink dynamics
nal bias pulls¢.. in opposite directions with average speed 5, wwo accounts.

*Up andug=2F/aMj. _ (i) The profile of astatic kink (antikink) ¢.(x,0) is de-
If the local fluctuations are spatially correlated, say formed into[13]
¢P,== sgiin—N][1-Z,»""N], (14)

(LD (X 1)) =2akTs(t—t")[e =¥ 2x], (12)

with Z,=2v/1+», N=m+1/2, m=0,£1,+2,..., and
v=[1+4y*—1]/[J1+4y°+1]. To make contact with
the displacive solutiorb..(x,0) one must replacel with x
andNI with X,, and take the continuum limig—c (so that
v=1—1/y). Note that the spatial extension of the discrete
kink solutions ¢ increases monotonically witly. As y

As speculated in Sec. II, for noise correlation length decreases below unityp’, approaches a step function
smaller than the kink size possible spatial dishomogene- (ord__er—d(lgor_der limig _ o
ities become negligible, i.eD(\)=D for A<d [15]. The (i) ¢2, is centered midway between two chain sites due
global noise regime simulated both experimentally in Sec. 110 the confining action of an effectivior Peierls-Nabarro
and numerically in Sec. Ill corresponds to the limit>oc of ~ (PN)] potential[13]. The PN potential describes the spatial
the sourcer(x,t) rescaled by the normalization factggx; ~ modulation of thes, rest energy as its center of mass is
the Langevin equatiof10) still applies, but the relevant Moved across one chain unit cell, say froml up to
noise strength is now li;m...2\D(\)=4D. This accounts (M+1)I. _ _ _
for the observation that global noise sustains kink propaga- AS a result, according to the Langevin equation approach
tion more effectively than local noise. Note that the enhanceof Sec. VB, the¢®, center of mas(t) diffuses on a
ment factor of 4, more exactlya4 is nothing but twice the periodic, piecewise harmonic potential with constarénd
distance of the DQ potential minimén dimensionless angular frequencypy, that is[13]
units).

Another important property of global noise is that it can- %= — w2\ [X=1(int[ X/11—1/2)]F 2F/ Mg+ an(t),
not trigger the nucleation of a kink-antikink pair and, there- (15)
fore, minimizes the chances of a “false alarnsee Fig. 3.
For 'this to occur it Wou_Id be necessary that a spatial dEfor\'/vherew%N:(le v)wS and infX/1] denotes the integer part
mation of a stable string configuratioiwvacuum state be . i .
generated large enough for the external bias to succeed [ﬂ X in units ofl. Note thatwpy— wg and wpy— ‘/Z“’O n
making it grow indefinitely. Such a two-body nucleation e highly d_lscrete and continuum limit, respectively. The
mechanism would require lcal breach of theg— — ¢ energy barriers of the PN potential are thiamos} qua-

; : dratic inl.
symmetry of the DQ equatio®), which can be best af- . . . .
forded in the presence of uncorrelatad situ fluctuations The Qne—dlmen3|qnal La?”ge"'” equatlth} has b‘?e'."
[16] studied in great detail by Riskdd7]. In the noiseless limit

The nucleation rate, namely, the number of kink—antikink”(t)zoj the procesX(t) is 1o be found either in a locked

pairs generated per unit of time and unit of length, can bétate With(X)=0, for 4F/Mo<w?y, or in a running state
easily computed by combining the nucleation theory of Refwith (X)=ug, for 4F/My> w3,,. This is indeed the depin-
[16] with the analytical results of Ref11] for the DQ ning (or locked-to-runningtransition described in Fig. 2. At
theory. For values of the string parameters relevant to Secgpjte temperature the stationary velocit)=u(T) can be

lI-IV—that is, for kT and Fd<Eq—the stationary DQ cast in the form following

nucleation rate can be approximated ]

the noise strengt® changes intg14]

Dd
PV=3d

A

3T

. (12

uT 1 1-e”’

Fl(”:z:(o—i?ﬂupné(ﬂ, (13) ur 0A-B(l-e ?)’

(16)

where §=2F|/kT and the quantitie®\ and B can be com-
if Fd<kT, or I'»(T)=3KT/Fdly(T), if kT<Fd<E, puted numerically with minimum effor{18]. The ratio
[12]. For an overdamped stringy>w, the time constant U(T)/ug is the rescaleds’, mobility; it crosses from 0
7(T) amounts to the kinKantikink) lifetime prior to a de- (locked statg over to 1 (running statg continuously in a
structive collision with an antikinkkink). Both estimates for relatively narrow neighborhood of the threshold vakig
the DQ nucleation rate clearly show that spontaneous nucle= Mow,%N/4. Moreover, u(T)/ug increases monotonically
ation of thermal pairs may appreciably degrade local-noisewith T at fixed bias. Such a temperature dependence of the
sustained propagation of injectédr geometri¢ kinks only  kink mobility explains the sequences of rise curves in Figs. 3
for thermal energy fluctuations of the order of the kink restand 6, where kink propagation seems to speed up on raising
energy. the noise level.
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VI. SUMMARY [19]. A detailed study of noise sustained propagation in the
. . ) resence of multiplicative fluctuations is beyond the scope of
In conclusion, the present analysis confirms our specula;

. : - . this work.
tion that the apparent SR behavior of the efficiency of noise- During the preparation of this manuscript the authors
sustained transmission of kinklike signals along a bistablefe

chain results from two competing mechanisms, both con! arned about recent results on propagation failure in the
trolled by noise: The driven diffusion dynamics of stable context of cell differentiatio20]. Utilizing a highly simpli-

noninteracting kinks, which increases exponentially with the]cied model composed of coupled bistable elements, the au-
9 L EXp Y thors furnish evidence for the discrete nature of chemical
temperature in the vicinity of the depinning transitigero-

ulsion mechanisim The detection of spurious signals, as signaling waves propagating through a chain of cells. We
P : I . P gnass, speculate that fluctuations, inherent in biological systems,
thermal kink-antikink pairs nucleate with exponentially in-

creasing rates, thus corrupting the propagated siéga- might play a significant role in the details of cell differentia-
. ; tion processes.
bling mechanism
If the spatial distribution of the noise was constrained to a
small neighborhood around the kink and zero along the rest
of the chain, fast and efficient noise supported signal trans-
mission without false alarms would be realizable. This seem- We acknowledge the Office of Naval Research for finan-
ingly artificially constructed scenario can be achieved natucial support. M.L., N.C., and E.H. warmly thank D. Cigna
rally by considering the case of purely multiplicative noisefor very significant contributions to the experimental setup.
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