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Noise sustained propagation: Local versus global noise
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We expand on prior results on noise supported signal propagation in arrays of coupled bistable elements. We
present and compare experimental and numerical results for kink propagation under the influence of local and
global fluctuations. As demonstrated previously for local noise, an optimum range of global noise power exists
for which the medium acts as a reliable transmission ‘‘channel.’’ We discuss implications for propagation
failure in a model of cardiac tissue, and present a general theoretical framework based on discrete kink
statistics. Valid for generic bistable chains, the theory captures the essential features observed in our experi-
ments and numerical simulations.

PACS number~s!: 05.40.2a, 02.50.2r, 05.45.2a, 87.10.1e
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I. INTRODUCTION

Information transfer through nonlinear systems in t
presence of fluctuations has been extensively studied in
context of stochastic resonance~SR! @1#. The frontier of this
research has shifted toward systems with spatial degree
freedom over the past few years. While the efforts initia
were directed towards enhancing the basic SR effect@2#,
recent work has demonstrated that noise can also su
wave propagation@3–5#. In early studies, Jung and Maye
Kress @3# showed that noise can sustain spiral waves i
caricature model of excitable media. The assisting role
noise for one- and two-dimensional, nonlinear wave pro
gation was experimentally confirmed by Ka´dár et al. @3# in a
chemical medium, and by Lo¨cher et al. @4# in an array of
coupled electronic resonators. Noise enhanced propaga
~NEP! for periodicsignals was explored by Lindneret al. @3#
in a chain of coupled, overdamped bistable oscillators. T
authors of Ref.@5# furnished evidence of self-organized crit
cality underlying the creation and propagation of waves
noise in a chemical subexcitable medium. So far, all exp
ments and simulations on NEP utilizedlocal and additive
noise. To our knowledge, no comparative studies on the
fectiveness of local vs global and additive vs multiplicati
noise have been attempted.

In this paper, we experimentally investigate the effectiv
ness of global noise as compared to local noise for the pro
gation of a signal in a chain of coupled bistable elemen
Expanding on earlier reports@4#, the experiments are per
formed using a 16316 array of diode resonators driven
the stable period-2 regime. A bias consisting of a sec
drive at half the main frequency renders one phase m
stable, and a phase kink can be made to propagate acros
array. For an intermediate value of the coupling resistors
small bias, we observe propagation failure. Adding noise
the drive of each element, either from a single source or fr
individual sources—corresponding to global and local no

*Present address: Siemens Corporate Research, 755 College
Princeton, NJ 08550.
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respectively—greatly increases the chances of successfu
nal transmission. Digital simulations of NEP in a simp
model of cardiac tissue compare favorably with these ob
vations, and allow us to investigate the effects of parame
mismatch between the elements. Finally, we present theo
ical insights borrowed from discrete kink statistics whi
describe the phenomena in reasonable agreement.

II. EXPERIMENTAL RESULTS

The experimental setup consists of 256 coupled dio
resonators, of which one element is shown in Fig. 1. T
elements are arranged in a 16316 array with periodic bound-
ary conditions connected along two opposite edges. E
diode resonator works as a bistable element when drive
its period-2 state. We break the phase symmetry by addin

d.,

FIG. 1. Experimental circuit arrangement for any node (i , j ).
We either add noise locally, as shown, or globally by adding o
noise source to the main drive. Coupling is provided by the resis
RC .
4954 ©2000 The American Physical Society
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the drive a second sinusoidal signal at half its frequen
This bias renders one phase more stable. We refer to the
stable phase as the metastable state. By inducing a p
change at one edge of the array, a one-dimensional w
front comprised of phase kinks will travel toward the dete
tor at the other edge. The noise generators were constru
using the shot noise generated by a current through apn
junction diode as a source.

It is clear that in the absence of noise, a local phase ju
will lead to a ‘‘domino effect’’ only if the bias and coupling
are strong enough. The energetically lower phase then pr
gates into the metastable phase in the form of a moving k
For identical elements, the speed of this moving interfa
depends on both the coupling strength and the amplitud
the applied bias. If the latter two parameters are chosen t
low enough, kinks in discrete systems will fail to propaga
In the experiment, there is a third factor contributing to ki
trapping, namely, heterogeneity of the chain. In our syst
the variation of key parameters of the diode resonators
the difference in local noise power is as high as 10%.
ranging the array with periodic boundary conditions in o
dimension and preserving the motion of wave fronts in
other dimension, we considerably reduce inhomogenities
effectively averaging over 16 elements.

Figure 2 displays the measured kink velocities in the
sence of noise as a function of bias for an intermediate va
of the coupling resistors. The velocity decreases appr
mately linearly with the bias down to a cutoff value of 0
units, where it rapidly falls off to zero. We operate the arr
at a bias of 0.6 units for which the system is not capable
deterministic kink motion.

Our experimental results are given in terms of the arriv
probability curves shown in Fig. 3. The procedure for obta
ing these are analogous to those described in Ref.@4#: We
reset all resonators to be in the metastable state, and
induce a phase flip at one edge of the array. Any succes

FIG. 2. Kink velocity as a function of the bias for an interm
diate value of the coupling resistorRC . The kink speed shows a
approximate linear decrease with bias, down to a cutoff value
approximately 0.9 units.
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kink propagation generates a step function at the detec
which we average over approximately 100 events, resul
in a smooth rise curve~solid lines!. In order to quantify
transmission degeneration by noise nucleated spurious
nals, we repeat the same experiment without inducing
phase flip initially~dashed lines!.

The arrival-probability curves for both local and glob
noise at five different noise strengths are shown in Fig. 3.
local, i.e., independent from site to site, noise, we obt
results analogous to those previously reported@4#. For a local
noise background of less than 0.0025 mV2/Hz @Fig. 3~a!#,
kinks remained trapped longer than the measurement tim
5000 drive cycles. At 0.0121 mV2/Hz the signals arrive with
a wide distribution of travel times and a slow mean@Fig.
3~b!#. The arrival times become shorter with increasing no
strengths@Figs. 3~c! and 3~d!#. Finally, at 0.0625 mV2/Hz a
substantial number of false starts~dashed lines! corrupt the
detection of the original input signal.

We found that the qualitative behavior of the chain und
the influence of global noise is similar, but the onset of d
tectable kink propagation is found at much lower no
strengths. We observe no kink propagation below noise
els of 0.001 mV2/Hz. Slow and disperse kink motion occu
for noise levels of 0.0025 mV2/Hz @Fig. 3~a!#. Higher aver-
age kink speeds and less fluctuations are recorded for le
of 0.0121 and 0.0256 mV2/Hz @Figs. 3~b! and 3~c!#, while
the signal is severely corrupted for values>0.04 mV2/Hz
@Figs. 3~d! and 3~e!#.

Figure 4 compares the velocities of the propagating w
front as a function of the noise strength for both global a
local noise. The velocity of the propagating wave fro
shows an approximate linear increase with increasing n
strength in both cases. Note that the velocity is simply
inverse of the measured arrival times multiplied by the nu
ber of sites. It is hence well defined only for low noise leve
in the case of substantial nucleation of additional therm
kinks-antikink pairs this calculated ‘‘velocity’’ should be in
terpreted with caution. Therefore, the data points in Figs
and 7 which correspond to significant noise corrupti
should be considered as outliers. For the coupling resis
used, the velocity for the global noise case is about 1
greater than that seen for local noise.

Besides the earlier onset in the case of global noise, th
are also notable differences in the mechanism that lead
spurious signals. Clearly, for identical elements—unlike s
tially uncorrelated noise—global noise cannot induce sp
ous kinks, which then compete with the deterministic ki
due to the signal. The only way of generating a ‘‘fal
alarm’’ at the detector would be to phase flip the ent
chain, thus requiring a single large fluctuation. This picture
not fully correct if there are mismatches between the e
ments, but illustrates the dominant mechanism of crea
the signal-masking noise background. Independent n
sources, however, easily spawn spurious kinks, but ra
ever cause a global phase flip of the array. We postulate
the mechanism of noise sustained propagationper seis not
very different for local and global noise, presuming the ki
width is small ~i.e., involving a few elements only!. The
reason for this conjecture is the local nature of the stocha
escape processes that provide for the average effective
displacement. As long as the spatial correlation length of
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FIG. 3. Arrival probablity of a signal at the end of the cha
with ~solid line! and without~dashed curves! an induced kink at the
beginning, for five local and global noise levels increasing from
to bottom.
noise is not substantially smaller than the kink width, t
noise induced ‘‘propulsion ’’ of the kink will be similar for
global and local noise. Note that the findings of Ka´dár et al.
@3#, who briefly addressed the issue of noise correlat
lengths, are consistent with this conjecture.

III. SIMULATIONS OF A MODEL OF CARDIAC TISSUE

Propagation failure of signals due to discreteness of
supporting medium was previously observed in theoret
@6# and experimental@7# studies of cardiac tissue. In particu
lar, Keener introduced a modified cable theory, which inc
porates the discretizing effects of the so-calledgap junctions
@6#. Gap junctions, characterized by the~relatively high! in-
tercellular resistancer g , provide the electrical coupling be
tween cardiac cells. Mathematically, the propagation of
tion potential along cardiac cells is described by vario
cable theories, which are analogous to wave propagatio
one-dimensional conductors~cables!. Formally, continuous
and discrete models describe the wave propagation by e
a partial differential equation or—in the latter case—v
coupled ordinary differential equations.Continuous cable
theory either ignores the effects of the gap junctions or
places the cytoplasmic resistance with an effective re
tance; in either case the electrical resistance is assumed
spatially homogeneous. Here we focus on the opposite
sumption, that gap junctional resistance is much more imp
tant than cytoplasmic resistance. We thus neglect the dyn
ics within a cell and assume that the propagation of
action potential is dominated by the delay caused by the
junctions @8#. Within the context of thisdiscrete cable
theory, we can write the current balance as@6#

CmS
dfn

dt
5

1

r g
~fn1122fn1fn21!1SIm~fn!, ~1!p

FIG. 4. Experimentally observed average kink velocities a
function of noise strength for both global and local noise. Note t
the last~two! data point~s! for local ~global! noise are corrupted by
noise, and should be interpreted as velocity only with caution.
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wherefn is the transmembrane potential for thenth cell,S is
the surface area of cell membrane, andCm is the membrane
capacitance per unit area of membrane.I m specifies the in-
ward ionic currents per unit area of the membrane, an
generally postulated to be a function offn , having three
zeros. For simplicity, we choose a simple cubic polynom
SIm(f)512A3f(12f)(f20.5)10.5 @6#. Note that
though similar in appearance, Eq.~1! is not simply a discreti-
zation of its continuous analog

CmS
]F

]t
5

L2

r g

]2F

]x2
1SIm~f! ~2!

~whereL is the size of the cardiac cell!, but stands in its own
right as a spatially discrete nonlinear wave equation. T
most important observation is that propagation can fail
model~1! if r g is sufficiently large, but increasing resistanc
in Eq. ~2! can never lead to propagation failure. Note thatr g
depends on the excitability of the tissue.

Figure 5 shows a plot of the numerically determin
speed~solid line! of propagation for model~1! as a function
of the coupling strengthd51/r g , as well as the analytically
obtained kink speedc5(c0L/CmRm)Ad ~dashed line! for
Eq. ~2!. The reader is referred to Ref.@6# for an explanation
of c0 andRm . It is evident that propagation is impossible f
r g larger than a certain critical valuer * , which turns out to
be a monotonic increasing function of excitability@6#.

We have performed digital simulations of the stochas
modification of Eq.~1!,

dfn

dt
5e~fn1122fn1fn21!

1SIm~fn!@11jM~ t !#1jA~ t !, ~3!

using the Euler-Maruyama algorithm@9# with a time step of
dt50.05 and a coupling strengthe50.07 ~40 elements!.
jA(t) and jM(t) are additive and multiplicative Gaussia
white noise, band limited in practice by the Nyquist fr
quencyf N51/2dt. We quantify the noise by its dimension
less variances252D f N , where 2D is the height of the one
sided noise spectrum.

FIG. 5. Kink speed as a function of coupling strengthd51/r g

for the continuous model equation~2! ~dashed line! and the discrete
model equation~1! ~solid line!. Note that propagation in the discre
model is impossible forr g.r * (d,d* 51/r * ). For this simulation,
CmS51 andSIm(f)512A3f(12f)(f20.5)10.5.
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Here we only consider the case of purely additive noi
jM(t)50. By following an analogous procedure to that
the experiment, we obtain the probabilities for success
signal transmission as illustrated in Fig. 6. As in the expe
ment, global noise provides for kink propagation at mu
lower values ofs2 than local noise does. Figure 7 compar
the velocities of the noise propulsed kink as a function ofs2

for both global and local noise. The velocity of the propag
ing wave front shows an approximately parabolic dep
dence on the noise power in both cases. For the coup
strength employed, global noise leads to speeds about
greater than that observed for local noise.

IV. DETECTION CRITERIA

The decision of whether a kink arriving at the last eleme
corresponds to a signal injected at the first site constitute
simple binary hypothesis-testing problem@10#. We assign
the null hypothesisH0 to ‘‘no signal injected,’’ and the op-
posite for the alternative hypothesisH1. Denote the accord-
ing decisionsDi as the judgment that hypothesisHi was in
effect. Clearly, there are two possible errors: A so-calledtype
I error occurs when making the decision thatH1 was in
effect while the contrary is true. Borrowing notation fro
radar detection, we refer to this as the probability offalse
alarm, Pf5P(D1uH0). On the other hand, ifH1 was in ef-
fect to generate the data, and we decideD0, then we have
committed atype II error, which in radar is referred to as
missed detection@10#. We do that with some probability
P(D0uH1) which is related to theprobability of detection
Pd5P(D1uH1) in an inverse fashion:Pd512P(D0uH1).

In our experiment, there is no uniquely defined, obje
tively ‘‘best’’ noise level without first defining a decision
strategy. Two suitable approaches are~i! the Neyman-
Pearson strategy, in which the probability of detectionPd is
maximized while specifying an upper bound for the fal
alarm probabilityPf ; and ~ii ! Bayes’ rule, which assigns
costs to the various outcomes of the decision process, suc
correctly detecting a signal or being ‘‘deceived’’ by a spu
ous kink. The optimum noise level in the latter case wou
be the one, which minimizes the total average cost.

In communication systems one is usually interested in
total probability of error Pe5P(D1uH0)1P(D0uH1)5Pf
112Pd . Though in the experimental setup there is no
herent time scale, i.e., the decision when to reset the cha
rather arbitrary, in digital communication applications w
would expect information bits to be sent at a constant ra
Hence we choose a reasonable time interval, at the en
which we measure the probabilities of false alarmPf and
missed detection 12Pd as functions of noise power. The
Pf is simply the value of the dashed line in Fig. 6 at tim
5300, andPd is the corresponding value for the solid lin
For local and global noise, the total probability of errorPe is
displayed in Fig. 8; for very low and rather high values of t
noise power,Pe is almost one. However, there exists an o
timal noise strength for which bothPf and 12Pd nearly
vanish, resulting in a sharp minimum ofPe .

V. THEORY

The results of Secs. II–IV touch upon two central pro
erties of kink statistics in a discrete bistable chain, name
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FIG. 6. Arrival probabilities for the discrete model equation~1!
with ~solid line! and without~dashed curves! an induced kink at site
1, for five local and global noise levels increasing from top
bottom. The propagation distance spans 40 elements. Note tha
employ dimensionless units for the noise powers2.
the Brownian motion of an individual kink and the nucl
ation of kink-antikink pairs in the presence of an extern
static bias~or dc forcing term!. In the absence of a precis
model for the two-state potential that describes the ph
shifts in the diode resonators of Sec. II or drives the tra
membrane potential of Sec. III, we speculate that thein situ
bistability of our arrays can be rendered satisfactorily
terms of a double quadratic~DQ! potential, that is by two
parabolas displaced by a distance 2a @see Fig. 9~a!#. A dis-
crete DQ model is likely to capture, at least qualitatively, t
essential features of the array dynamics investigated ab
while affording substantial simplifications in its analytic
treatment. The analysis of this section can be carried o
with more mathematical effort, to thef4 model of Sec. III,
as well.

The DQ model has been studied both in the continu
@11# and in the discrete case@13#. In dimensionless units the
DQ Hamiltonian reads

we

FIG. 7. Numerically measured average kink velocities as a fu
tion of noise strengths2 ~dimensionless! for both global and local
noise. It is insightful to compare these values with Fig. 5. As in F
4, the last data point includes a large fraction of spurious kin
which results in an artificially high value for the velocity.

FIG. 8. Total probability of errorPe as a function of noise
variances2 ~dimensionless! for global ~solid line! and local noise
~dashed line!. For a range of optimal noise strengths,Pe virtually
vanishes. The qualitative behavior is robust to variations in
measurement time, which here is taken to be 300 time units.



e

re
a

b
c

il-

e
at

trib-
Q

s

r-
n-

-
he

g

car-

y
n

s
on

PRE 61 4959NOISE SUSTAINED PROPAGATION: LOCAL VERSUS . . .
H

H0
5 l(

n
H ḟn

2

2
1

c0
2

4l 2 @~fn2fn21!21~fn2fn11!2#

1
v0

2

2
~ ufu21!2J , ~4!

with H05ma2/ l . Eachfn can be regarded as the displac
ment ~in units of 2a) of the nth chain site with massm, c0,
and v0 represent, respectively, the limiting speed and f
quency of the phonon modes propagating along the ch
and l denotes the chain lattice constant@for instance, in Eq.
~1! l was set to 1#. The ratio c0

2/ l 2, which quantifies the
effectiveness of the coupling between two adjacent bista
units, is the coupling constant of our model. The importan
of the discreteness effects is measured by thediscreteness
parameter

g5
c0

2

v0l
[

d

l
, ~5!

namely, the ratio of the kink lengthd to the chain spacingl.

FIG. 9. The double quartic~DQ! model forv05c05a51 and
discreteness parameterg51. ~a! The DQ potentialV@f# of Eqs.~4!
and ~6!; ~b! The PN potentialV(x,F) of Eq. ~15! and @18# for
F/Fth50.08;~c! Kink stationary velocityu(T) versus bias intensity
F for v0

2/kT520 ~curve 1! and 50~curve 2!. At T501 the limiting
curve ~dashed! is given by u/uF50 for F,Fth and u/uF

5$(F/Fth)ln@F/(F2Fth)#%
21 for F.Fth . All quantities plotted are

dimensionless.
-

-
in

le
e

A. Continuum limit

In the continuum~or displacive! limit g→` the Hamil-
tonian~4! can be expressed as the line integral of the Ham
tonian density

H@f#5
f t

2

2
1c0

2
fx

2

2
1V@f#, ~6!

where the string fieldf(x,t) is defined as liml→0fx/ l(t) and
V@f#5(v0

2/2)(ufu21)2. The statistical mechanics of th
continuum DQ model can be worked out analytically in gre
detail@11#. In particular, we know that the kink (f1) and the
antikink solutions (f2)

f6~x,t !56sgn@x2X~ t !#F12expS 2ux2X~ t !u

dA12u2/c0
2D 1G

~7!

can be regarded as relativistic quasiparticles with sized
5c0 /v0, mass M05E0 /c0

251/d ~or rest energy E0

5v0c0), and center of massX(t)5X01ut.
At low temperatureskT!E0, any string configuration can

be represented as a linear superposition of randomly dis
uted kinks and antikinks floating on a phonon bath. A D
string in equilibrium at temperatureT and with boundary
conditionsf(2`,t)5f(1`,t) naturally bears a dilute ga
of thermal kink-antikink pairs with density

n0~T!5
1

2A2

1

d
S E0

kT
D 1/2

e2E0 /kT. ~8!

The qualification thermal underscores the fact thatn0 pairs
per unit of length~with n0d!1) are being generated by the
mal fluctuations alone, irrespective of any geometric co
straint at the boundaries~see discussion of Fig. 2 in Sec. II!.

B. Kink Brownian motion

The f6(x,t) solutions @Eq. ~7!# tend to travel with an
arbitrary constant speedu,c0, unless perturbed by the cou
pling to a heat bath or by an external field of force. T
simplest heat-bath model was obtained@14# by adding a vis-
cous term2af t and a zero-mean, Gaussianlocal noise
sourcez(x,t) to the string equation of motion correspondin
to the Hamiltonian density~6!; that is,

f tt2c0
2fxx2v0

2 sgn@f#~ ufu21!52af t1F1z~x,t !.
~9!

Note that all our experiments and simulations have been
ried out in the overdamped limit,a@v0, and in the presence
of an additional sub-threshold forceF with F,v0

2, also in-
corporated in Eq.~9!. Thermalization is imposed here b
choosing the noise autocorrelation functio
^z(x,t)z(x8,t8)&52akTd(t2t8)d(x2x8).

A single kink ~antikink! subjected to thermal fluctuation
undergoes driven Brownian motion with Langevin equati

Ẋ57
2F

aM0
1h~ t !, ~10!
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where h(t) is a zero-mean-valued Gaussian noise w
strength D5kT/aM0 and autocorrelation function
^h(t)h(0)&52Dd(t). As apparent from Eq.~10!, the exter-
nal bias pullsf6 in opposite directions with average spe
6uF anduF52F/aM0.

If the local fluctuations are spatially correlated, say

^z~x,t !z~x8,t8!&52akTd~ t2t8!@e2ux2x8u/l/2l#, ~11!

the noise strengthD changes into@14#

D~l!5
Dd

l1d S 11
l

l1dD . ~12!

As speculated in Sec. II, for noise correlation lengthl
smaller than the kink sized possible spatial dishomogene
ities become negligible, i.e.,D(l).D for l!d @15#. The
global noise regime simulated both experimentally in Sec
and numerically in Sec. III corresponds to the limitl→` of
the sourcez(x,t) rescaled by the normalization factorA2l;
the Langevin equation~10! still applies, but the relevan
noise strength is now liml→`2lD(l)54D. This accounts
for the observation that global noise sustains kink propa
tion more effectively than local noise. Note that the enhan
ment factor of 4, more exactly 4a, is nothing but twice the
distance of the DQ potential minima~in dimensionless
units!.

Another important property of global noise is that it ca
not trigger the nucleation of a kink-antikink pair and, ther
fore, minimizes the chances of a ‘‘false alarm’’~see Fig. 3!.
For this to occur it would be necessary that a spatial de
mation of a stable string configuration~vacuum state! be
generated large enough for the external bias to succee
making it grow indefinitely. Such a two-body nucleatio
mechanism would require alocal breach of thef→2f
symmetry of the DQ equation~9!, which can be best af
forded in the presence of uncorrelatedin situ fluctuations
@16#.

The nucleation rate, namely, the number of kink-antiki
pairs generated per unit of time and unit of length, can
easily computed by combining the nucleation theory of R
@16# with the analytical results of Ref.@11# for the DQ
theory. For values of the string parameters relevant to S
II–IV—that is, for kT and Fd!E0—the stationary DQ
nucleation rate can be approximated by@16#

G1~T!5
2n0~T!

t~T!
52uFn0

2~T!, ~13!

if Fd!kT, or G2(T)5 1
2 AkT/FdG1(T), if kT!Fd!E0

@12#. For an overdamped string,a@v0 the time constant
t(T) amounts to the kink~antikink! lifetime prior to a de-
structive collision with an antikink~kink!. Both estimates for
the DQ nucleation rate clearly show that spontaneous nu
ation of thermal pairs may appreciably degrade local-no
sustained propagation of injected~or geometric! kinks only
for thermal energy fluctuations of the order of the kink re
energy.
I
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C. Peierls-Nabarro potential

Let us go back now to the case of a discrete DQ cha
Discreteness~with parameterg) affects the kink dynamics
on two accounts.

~i! The profile of astatic kink ~antikink! f6(x,0) is de-
formed into@13#

f6,n
(s) 56 sgn@n2N#@12Znn un2Nu#, ~14!

with Zn52An/11n, N5m11/2, m50,61,62, . . . , and
n5@A114g221#/@A114g211#. To make contact with
the displacive solutionf6(x,0) one must replacenl with x
andNl with X0, and take the continuum limitg→` ~so that
n.121/g). Note that the spatial extension of the discre
kink solutionsf6,n

(s) increases monotonically withg. As g
decreases below unity,f6,n

(s) approaches a step functio
~order-disorder limit!;

~ii ! f6,n
(s) is centered midway between two chain sites d

to the confining action of an effective@or Peierls-Nabarro
~PN!# potential@13#. The PN potential describes the spat
modulation of thef6,n

(s) rest energy as its center of mass
moved across one chain unit cell, say fromml up to
(m11)l .

As a result, according to the Langevin equation appro
of Sec. V B, thef6,n

(s) center of massX(t) diffuses on a
periodic, piecewise harmonic potential with constantl and
angular frequencyvPN , that is@13#

aẊ52vPN
2 @X2 l ~ int@X/ l #21/2!#72F/M01ah~ t !,

~15!

wherevPN
2 .(11n)v0

2 and int@X/ l # denotes the integer par
of X in units of l. Note thatvPN→v0 and vPN→A2v0 in
the highly discrete and continuum limit, respectively. T
energy barriers of the PN potential are thus~almost! qua-
dratic in l.

The one-dimensional Langevin equation~15! has been
studied in great detail by Risken@17#. In the noiseless limit
h(t)[0, the processX(t) is to be found either in a locked
state with^Ẋ&50, for 4F/M0,vPN

2 , or in a running state

with ^Ẋ&.uF , for 4F/M0.vPN
2 . This is indeed the depin

ning ~or locked-to-running! transition described in Fig. 2. A
finite temperature the stationary velocity^Ẋ&5u(T) can be
cast in the form following

u~T!

uF
5

1

d

12e2d

A2B~12e2d!
, ~16!

whered52Fl /kT and the quantitiesA and B can be com-
puted numerically with minimum effort@18#. The ratio
u(T)/uF is the rescaledf6,n

(s) mobility; it crosses from 0
~locked state! over to 1 ~running state! continuously in a
relatively narrow neighborhood of the threshold valueFth

5M0vPN
2 /4. Moreover, u(T)/uF increases monotonically

with T at fixed bias. Such a temperature dependence of
kink mobility explains the sequences of rise curves in Figs
and 6, where kink propagation seems to speed up on rai
the noise level.
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VI. SUMMARY

In conclusion, the present analysis confirms our spec
tion that the apparent SR behavior of the efficiency of noi
sustained transmission of kinklike signals along a bista
chain results from two competing mechanisms, both c
trolled by noise: The driven diffusion dynamics of stab
noninteracting kinks, which increases exponentially with
temperature in the vicinity of the depinning transition~pro-
pulsion mechanism!; The detection of spurious signals, a
thermal kink-antikink pairs nucleate with exponentially i
creasing rates, thus corrupting the propagated signal~gar-
bling mechanism!.

If the spatial distribution of the noise was constrained t
small neighborhood around the kink and zero along the
of the chain, fast and efficient noise supported signal tra
mission without false alarms would be realizable. This see
ingly artificially constructed scenario can be achieved na
rally by considering the case of purely multiplicative noi
i

i

h

s

r
i

M

,

e
.

w

i
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le
-
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@19#. A detailed study of noise sustained propagation in
presence of multiplicative fluctuations is beyond the scope
this work.

During the preparation of this manuscript the autho
learned about recent results on propagation failure in
context of cell differentiation@20#. Utilizing a highly simpli-
fied model composed of coupled bistable elements, the
thors furnish evidence for the discrete nature of chem
signaling waves propagating through a chain of cells. W
speculate that fluctuations, inherent in biological syste
might play a significant role in the details of cell differenti
tion processes.
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